In vitro proliferation and differentiation of adipose-derived stem cells isolated using anti-CD105 magnetic beads.
نویسندگان
چکیده
The present study aimed to investigate the feasibility of isolating adipose-derived stem cells (ADSCs) by selecting cells that express the surface receptor CD105. Surface antigen expression of the unsorted cells was undertaken using FACS analysis. Primary adipose-derived cells were isolated. The second passage cells were incubated with anti-CD105 magnetic beads, and separated using a magnetic separator. Cell growth and colony formation was determined by counting and Giemsa staining, respectively. Cells also underwent histological immunohistochemical, and RT-PCR analyses to determine their chondrogenic, adipogenic and osteogenic potential. Increased cell proliferation and colony formation was observed in CD105-positive (CD105⁺) as compared to the CD105-negative (CD105⁻) cells (P<0.001). Following induction, the expression of type II collagen and the number of calcium deposits and lipid droplets in the CD105⁺ ADCs were markedly higher than in the CD105⁻ ADCs. Furthermore, increased alkaline phosphatase (AKP), leptin and PPARγ2 mRNA expression was detected in the CD105⁺ ADCs (P<0.01). Isolation of CD105⁺ ADSCs by MACS was feasible. Thus, CD105 can be used as a relatively specific marker for the selection of ADSCs. Although the chondrogenic, adipogenic and osteogenic potential of these cells is suggestive of their potential for use in tissue engineering treatments, further in vivo studies are necessary.
منابع مشابه
Estrogen treatment enhances neurogenic differentiation of human adipose derived stem cells in vitro
Objective(s):Estrogen is a sexual hormone that has prominent effects on reproductive and non-reproductive tissues. The aim of this study is to evaluate the effects of estrogen on the proliferation and neural differentiation of human adipose derived stem cells (ADSCs) during neurogenic differentiation. Materials and Methods: Isolated human ADSCs were trans-differentiated in neural induction med...
متن کاملMesenchymal Stem Cells Derived from Rat Epicardial Versus Epididymal Adipose Tissue
Objective(s) Some investigation has indicated that adipose-derived stem cells possess different surface epitopes and differentiation potential according to the localization of fat pad from which the cells were derived. In the present study proliferation capacity and aging of such cells were explored. Materials and Methods Adherent cells were isolated from the collagenase digests of adipose tiss...
متن کاملجداسازی سلولهای بنیادی مزانشیمی از بافت چربی و ریهی موش BALB/c و مقایسهی ایمونوفنوتایپ آنها
Background and Objective: Mesenchymal stem cells are promising sources of stem cells for tissue repair because of their ability to differentiate into different cells, easy proliferation and culture, and immunomodulatory properties. Despite extensive research on the immunophenotype of mesenchymal stem cells, a lack of specific markers comprises challenges for researchers. The aim of this researc...
متن کاملIsolation and in vitro Characterization of Mesenchymal Stem Cells Derived from the Pulp Tissue of Human Third Molar Tooth
Background: It is still controversial that the stem cells isolated from human dental pulp meets the criteria for mesenchymal stem cells (MSCs). The aim of the present study was to examine whether or not they are MSCs, or are distinct stem cells population residing in tooth pulp. Methods: Adherent fibroblastic cells in the culture of pulp tissue from human third molars were propagated through se...
متن کاملGrowth Kinetics and in Vitro Aging of Mesenchymal Stem Cells Isolated From Rat Adipose Versus Bone Marrow Tissues
Objective- To investigate and compare growth potential as well as aging of mesenchymal stem cells (MSCs) derived from rat bone marrow tissue and adipose tissue (AT) occurred at epicardial and epididymal regions. Design- Experimental study. Animals- 10 Wistar Rats. Procedures- Rat MSCs occurred at bone marrow and epicardial and epididymal AT were isolated and culture expanded through sev...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- International journal of molecular medicine
دوره 30 4 شماره
صفحات -
تاریخ انتشار 2012